A Galerkin Method for Linear Pde Systems in Circular Geometries with Structural Acoustic Applications

نویسنده

  • Ralph C. Smith
چکیده

A Galerkin method for systems of PDE's in circular geometries is presented with motivating problems being drawn from structural, acoustic and structural acoustic applications. Depending upon the application under consideration, piecewise ,plines or Legendre polynomials are used when approximating the system dynamics with modifications included to incorporate the analytic solution decay near the coordinate singularity. This provides an efficient method which retains its accuracy throughout the circular domain without degradation at the singularity. Because the problems under consideration are linear or weakly nonlinear with constant or piecewise constant coefficients, transform methods for the problems are not investigated. While the specific method is developed for the 2-D wave equation on a circular domain and the equation of transverse motion for a thin circular plate, examples demonstrating the extension of the techniques to a fully coupled structural acoustic system are used to illustrate the flexibility of the method when approximating the dynamics of more complex systems. 'This research was supported in part by the National Aeronautics and Space Administration under NASA Contract Number NASI-19480 while the author was a visiting scientist at the Institute for Computer Applications in Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23681. Additional support was also provided in part under NASA grant NAG-1-1600.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coupling Nonlinear Element Free Galerkin and Linear Galerkin Finite Volume Solver for 2D Modeling of Local Plasticity in Structural Material

This paper introduces a computational strategy to collaboratively develop the Galerkin Finite Volume Method (GFVM) as one of the most straightforward and efficient explicit numerical methods to solve structural problems encountering material nonlinearity in a small limited area, while the remainder of the domain represents a linear elastic behavior. In this regard, the Element Free Galerkin met...

متن کامل

Determination of Stability Domains for Nonlinear Dynamical Systems Using the Weighted Residuals Method

Finding a suitable estimation of stability domain around stable equilibrium points is an important issue in the study of nonlinear dynamical systems. This paper intends to apply a set of analytical-numerical methods to estimate the region of attraction for autonomous nonlinear systems. In mechanical and structural engineering, autonomous systems could be found in large deformation problems or c...

متن کامل

High-order Time-stepping for Galerkin and Collocation Methods Based on Component-wise Approximation of Matrix Functions

This paper describes an effort to develop timestepping methods for partial differential equations that can overcome the difficulties that existing methods have with stiffness of the system of ordinary differential equations that results from spatial discretization. Stiffness is caused by the contrasting behavior of coupled components of the solution, and makes “one-size-fits-all” polynomial and...

متن کامل

Finite Difference and Discontinuous Galerkin Methods for Wave Equations

Wang, S. 2017. Finite Difference and Discontinuous Galerkin Methods for Wave Equations. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1522. 53 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9927-3. Wave propagation problems can be modeled by partial differential equations. In this thesis, we study wave propagation in fluids and...

متن کامل

Nelder-Mead algorithm optimization and Galerkin’s method thermal performance analysis of circular porous fins with various profiles in fully wet conditions

The main objective of this research is to analyze optimization and the thermal performance of circular porous fins with four different profiles, rectangular, convex, triangular and concave under fully wet conditions. In this research, a linear model was used for the relationship between humidity and temperature. Also, modeling is assumed one-dimensional and the temperature changes only in the d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997